On the maximum average degree and the oriented chromatic number of a graph

نویسندگان

  • Oleg V. Borodin
  • Alexandr V. Kostochka
  • Jaroslav Nesetril
  • André Raspaud
  • Éric Sopena
چکیده

The oriented chromatic number o(H) of an oriented graph H is de ned as the minimum order of an oriented graph H ′ such that H has a homomorphism to H ′. The oriented chromatic number o(G) of an undirected graph G is then de ned as the maximum oriented chromatic number of its orientations. In this paper we study the links between o(G) and mad(G) de ned as the maximum average degree of the subgraphs of G. c © 1999 Elsevier Science B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

An oriented coloring of graphs with maximum average degree less than

An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented graph with maximum average degree less than 10 3 has an oriented chromatic number at most 16. This implies that every oriented planar graph with girth at least five has an oriented chromatic number at most 16, that improves the previous known bound of 19 due to ...

متن کامل

An oriented coloring of planar graphs with girth at least five

An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented graph with maximum average degree strictly less than 10 3 has an oriented chromatic number at most 16. This implies that every oriented planar graph with girth at least 5 has an oriented chromatic number at most 16, that improves the previous known bound of 19 d...

متن کامل

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 206  شماره 

صفحات  -

تاریخ انتشار 1999